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Abstract. We study the traditional problem of convergence of perturbation expansions when
the hermiticity of the Hamiltonian is relaxed to a weakerPT symmetry. An elementary and
quite exceptional cubic anharmonic oscillator is chosen as an illustrative example of such models.
We describe its perturbative features paying particular attention to the strong-coupling regime.
Efficient numerical perturbation theory proves suitable for such a purpose.

1. Introduction and summary

The analysis of convergence of perturbation expansions is one of the most exciting
mathematical problems in quantum physics. Its relevance ranges from the phenomenology
of bound states in atomic and molecular physics up to abstract methodical considerations
which concern quantum fields [1]. Often, the convergence of perturbation series is studied
by means of an elementary anharmonic oscillator model in one dimension:

V (x) = B x2+ C x3+D x4 x ∈ (−∞,∞) (1)

because of its apparent simplicity. The application of textbook Rayleigh–Schrödinger (RS)
perturbation theory is remarkably simple in the so called weak coupling regime dominated
by harmonic oscillations whenB � |C| andB � |D|.

In more sophisticated approaches based on an extensive numerical re-processing of
the RS series one considers the strong-coupling regime in which the quartic term is not
only important but also dominating [2, 3]. This is of particular importance in field
theory where perturbation expansions are one of the few available constructive means.
The strong-coupling approach may also be of value in a quantitative description of
seemingly non-perturbative quantum mechanical systems of physical interest [4]. Allowing
complex values of the couplings of model (1) further enriches its physical meaning and
scope [5]. It opens new phenomenological possibilities. Energies may acquire purely
imaginary components, bound states may ‘dissolve’ into unstable resonances, etc. Various
mathematical techniques have to be combined in order to treat these extended models with
non-Hermitian Hamiltonians (see [6] for a review of some relevant literature).
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In particular, Bender and Boettcher [7] recently discovered, among all the complex
quartic potentials (1), a large two-parametric family of non-Hermitian forces which are
partially, quasi-exactly[8] solvable. The parity-violating Bender and Boettcher example is
already slightly counterintuitive and exceptional. Its appeal comes from field theory as it
conserves the productPT of parity and time reversal. In the context of quantum mechanics
this just means the symmetry with respect to the simultaneous reflection of the coordinate
x →−x and complex conjugation which, formally, replaces i by−i [9].

Strictly speaking, a rigorous treatment of quartic potentials and, in general, of all
their higher-powerPT -symmetric generalizations(ix)N with N > 4 already requires
a nontrivial deformation of the integration path into the complex plane [10]. A slight
formal simplification is achieved, therefore, when the dominant quartic anharmonicity in (1)
vanishes [11]. In this setting, trying to bridge the gap between the Hermitian and non-
Hermitian Hamiltonians in what follows, we will analyse only the non-Hermitian andPT -
symmetric shifted version of (1) withD = 0:

V (x) = a (ix)+ b (ix)2+ c (ix)3 x ∈ (−∞,∞). (2)

Historically, the empirical and numerically oriented studies of interactions (2) witha = 0
go back to Daniel Bessis who conjectured, several years ago, that the purely imaginary
cubic coupling keeps the ‘resonant’ anharmonic energies discrete and, what is even more
surprising,purely real [12]. This property makes these models immediately eligible for
perturbative description.

A new, additional motive for perturbative analysis of non-Hermitian oscillators of Bessis
type lies in unexpected difficulties related to their weak coupling perturbative interpretation.
Indeed, one cannot allow the cubicand quadratic coupling to vanish simultaneously since
the spectrum of linearV0(x) = ix is null [13]. In this sense, besides a far reaching analogy
between equations (1) and (2) (which was the original inspiration for our present paper)
there also exist certain differences.

Several particular cases of potential (2) with real couplings are discussed here. In
section 2 we recall the ideas of numerical perturbation theory [14, 15]. Section 3 then
shows that their application to the class of non-Hermitian examples (2) is straightforward.
Finally, in section 4, we add more observations regarding re-summations of perturbative
expansions for ourPT symmetric Hamiltonians, motivated by their possible methodical
connection to field theory, etc.

We may summarize by stating that even our utterly schematic examples confirm that
many PT -symmetric non-Hermitian oscillators similar to (2) may be understood and
described in a way which strictly parallels the existing extensive studies of the ordinary
anharmonic oscillator (1).

The continuation of real Hamiltonians to the complex plane while preserving theirPT
symmetry opens a new and almost unexplored field of mathematical analysis of Schrödinger
equation. In this context we have resorted to the simple numerical algorithm to compute
perturbation series. For Hermitian Hamiltonians, such a numerical form of perturbation
theory proved convenient as a stable source of expansions that are suitable for all values
of the coupling constant. Our present results extend this numerical experience to a few
extremely interesting non-Hermitian examples.

The numerical perturbative approach is again shown to offer a reliable computational
tool. In the strong-coupling and, possibly, renormalized regime the possibility of using a
virtually arbitrary zero-order system of Bessis type is well matched by the ‘perturbation
friendly’ real and discrete character of the spectra of itsPT -symmetric perturbations. Of
course, the eigenfunctions are complex valued, with the only requirement being that of
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giving square-integrable wavefunctions. One may appreciate the role of thePT symmetry
of Hamiltonians which not only providereal eigenvalues, but also their perturbation form
with real coefficients.

2. Perturbation series by numerical techniques

Traditional textbooks on quantum mechanics pay a thorough attention to the construction
of perturbative expansions based on the expansion in a complete set of eigenvectors of the
unperturbed HamiltonianH0. For this reason, the perturbation series

E = E0+ λE1+ λ2E2+ · · · (3)

for the eigenvalues of HamiltoniansH(λ) = H0 + λW are commonly restricted to a small
range of a few available exactly solvable models.

In contrast, a purely numerical approach is both straightforward and more widely
applicable to the determination of perturbation expansions like (3). A simple and efficient
procedure for obtaining RS perturbation expansions for the solutions of the Schrödinger
equation with Hamiltonians

H = − d2

dx2
+ V (x)+ λW(x) (4)

consists in a replacement of the second derivative operator by the centred second difference
operator,

d2

dx2
≈ δ2

h2

h being the distance between adjacent points in a suitable uniform mesh. In principle, the
problem reduces to the diagonalization of asymmetricand tridiagonal matrix, well known
and understood in the case of real potentials [16].

Many open questions regarding numerical methods for complex potentials still exist [17].
In particular, our Hamiltonian matrices cease to be Hermitian even after discretization. One
must test and verify the very reality of their eigenvalues, as well as the rate of theirh→ 0
convergence with much greater care. A word of warning may come from both the elementary
analytical arguments (illustrating, for example, the subtleties of discretization in the complex
plane by the—very discontinuous—square well example) and the numerical tests we offer
here.

From this point on, upper-case bold sans-serif and lower-case bold italic letters denote
square matrices and column vectors, respectively. In such a notation we solve the matrix
eigenvalue problem[

H0+ λHI

]
v = Ev

where the Hamiltonian matrixH0+ λHI is symmetric, with

H0 =



2

h2
+ V0 − 1

h2
0 0 · · ·

− 1

h2

2

h2
+ V1 − 1

h2
0 · · ·

0 − 1

h2

2

h2
+ V2 − 1

h2

...
. . .

. . .
. . .
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and

HI =


W0 0 · · ·
0 W1

...
. . .

 .
When applying perturbation theory one first solves the eigenvalue equation for the
unperturbed problem

H0v = Ev (5)

and then a hierarchy of inhomogeneous equations for the perturbation corrections of higher
order:

H0vk + HIvk− = Evk +Ekv +
k−∑
p=

Epvp−k. (6)

Notice thatv is both a left and right eigenvector because of the symmetry ofH0. We find
it convenient to use the scalar product [vTw] ≡ ∑

viwi, although it does not produce a
real norm, and resort to theintermediate normalizationcondition

[vT
vk] ≡

∑
i

vivki = δk

that leads to simpler expressions for the energy coefficients. The intermediate normalization
condition is based on the observation that ifvk is a solution of the perturbation equation,
thenvk + αv is also a solution for arbitrary values ofα. The computational scheme is
straightforward:

(i) Solve the eigenvalue equation (5).
(ii) Project (6) ontovT

 and obtain thekth perturbative correction to the energy

Ek =
[
vT
HIvk−

]
.

(iii) Once Ek is known, solve the inhomogeneous equation forvk.
(iv) Orthogonalizevk with respect tov:

vk ← vk −
[
vT
vk

]
v.

3. Application to the two PT symmetric models

Table 1 shows some perturbation corrections to the energies of thePT symmetric
Hamiltonians

H(1) = p2+ ix3+ iλx (7)

and

H(2) = p2+ ix3+ λx2. (8)

In both cases the coefficientsE(1,2)n of the powers ofλ are real, as expected from thePT
symmetry. We used complex arithmetics for the numerical calculation observing that the
imaginary parts vanished within the rounding errors. The code was successfully tested with
the exactly solvable model

H = p2+ x2+ iλx (9)

obtaining the known expansion

E(λ) = 1+ 1
4λ

2
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which one can easily derive by means of the coordinate translationx → x + iλ/2 in the
HamiltonianH = p2+ x2. The agreement between the numerical and exact result suggests
that the method is sufficiently accurate and stable.

Table 1. Energy coefficients for the ground states of the Hamiltonians (7) and (8).

n E
(1)
n for p2 + ix3 + iλx E

(2)
n for p2 + ix3 + λx2

0 1.156 267 071 982 1.156 267 071 982
1 0.590 072 533 078 0
2 0.119 413 858 091 0.196 690 844 356
3 −1.142 128 489 951× 10−2 −7.407 407 406 938× 10−2

4 2.197 147 795 152× 10−3 1.326 820 645 262× 10−2

5 −5.299 287 434 734× 10−4 0
6 1.432 651 458 960× 10−4 −4.230 105 523 351× 10−4

7 −4.148 903 908 710× 10−5 0
8 1.257 939 817 338× 10−5 2.712 528 133 232× 10−5

9 −3.941 134 497 194× 10−6 0
10 1.265 478 160 326× 10−6 −2.180 776 735 057× 10−6

11 −4.141 789 581 668× 10−7 0
12 1.376 462 051 952× 10−7 1.965 228 322 941× 10−7

13 −4.632 126 852 199× 10−8 0
14 1.575 200 873 072× 10−8 −1.897 075 421 079× 10−8

15 −5.404 290 239 370× 10−9 0
16 1.868 293 677 263× 10−9 1.917 298 897 845× 10−9

17 −6.501 605 918 143× 10−10 0
18 2.275 683 198 987× 10−10 −2.002 303 776 843× 10−10

19 −8.006 218 039 652× 10−11 0
20 2.829 596 711 623× 10−11 2.143 098 365 950× 10−11

The two perturbative expansions of table 1 are connected, because the Hamiltonians (7)
and (8) are related by a complex translation of the coordinate. The substitutionx → x+iλ/3
in (8) results in a Hamiltonian like equation (7):

H → p2+ ix3+
(

iλ2

3

)
x − 2

27
λ3.

Consequently, the energy coefficientsE(1)n andE(2)n of table 1 satisfy

E
(2)
2n =

1

3n
E(1)n E

(2)
2n+1 = −

2

27
δn1 (10)

indicating that the expansionE(2)n has only even coefficients except forE(2)3 = − 2
27. Our

numerical coefficients shown in table 1 obey the exact relations (10) with an accuracy close
to 1 part in 1010. This test is an additional confirmation of the stability and accuracy of our
numerical method.

We may conclude that the application of a numerical version of perturbation theory to
non-Hermitian Hamiltonians is straightforward as long as their spectrum is discrete. The
demonstrated feasibility of a reliablequantitative perturbative description of our unusual
models (2) withPT -symmetric forces is encouraging.

4. Renormalized perturbation expansions

From the magnitude of the energy coefficients in the tests of section 3 we may estimate the
radii of convergence to be about 1.7 and 3 for the Hamiltonians (7) and (8), respectively.
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Table 2. Renormalized perturbation expansion for the Hamiltonian (12) corresponding to the
variable(1− κ), for ω = 1, without the factor [λ/(1− κ)]1/2.

n E
(r)
n n E

(r)
n n E

(r)
n

0 1.156 267 07× 10+0 30 −6.171 354 80× 10−4 60 −5.421 861 48× 10−5

1 −4.625 068 29× 10−1 31 −8.974 095 09× 10−4 61 −1.397 002 06× 10−5

2 5.793 879 57× 10−2 32 −1.054 718 29× 10−3 62 2.193 137 29× 10−5

3 8.795 384 66× 10−2 33 −1.096 628 61× 10−3 63 5.129 700 44× 10−5

4 7.665 126 27× 10−2 34 −1.038 846 74× 10−3 64 7.274 120 89× 10−5

5 5.723 695 34× 10−2 35 −9.025 336 00× 10−4 65 8.567 778 88× 10−5

6 3.810 370 38× 10−2 36 −7.116 803 94× 10−4 66 9.025 593 62× 10−5

7 2.188 533 70× 10−2 37 −4.907 264 98× 10−4 67 8.724 869 94× 10−5

8 9.294 671 98× 10−3 38 −2.625 529 92× 10−4 68 7.790 895 89× 10−5

9 2.694 862 28× 10−4 39 −4.693 584 53× 10−5 69 6.380 829 04× 10−5

10 −5.590 411 45× 10−3 40 1.405 040 96× 10−4 70 4.667 329 11× 10−5

11 −8.824 428 31× 10−3 41 2.888 589 70× 10−4 71 2.823 216 47× 10−5

12 −1.000 845 22× 10−2 42 3.920 389 67× 10−4 72 1.008 185 15× 10−5

13 −9.697 245 68× 10−3 43 4.484 903 39× 10−4 73 −6.416 947 26× 10−6

14 −8.391 244 75× 10−3 44 4.606 096 91× 10−4 74 −2.021 260 36× 10−5

15 −6.518 279 89× 10−3 45 4.339 467 92× 10−4 75 −3.060 201 07× 10−5

16 −4.425 314 87× 10−3 46 3.762 890 89× 10−4 76 −3.723 809 71× 10−5

17 −2.377 298 32× 10−3 47 2.967 152 78× 10−4 77 −4.010 908 85× 10−5

18 −5.611 495 17× 10−4 48 2.046 940 55× 10−4 78 −3.949 485 37× 10−5

19 9.066 333 51× 10−4 49 1.092 891 25× 10−4 79 −3.590 670 12× 10−5

20 1.969 985 43× 10−3 50 1.851 445 90× 10−5 80 −3.001 741 30× 10−5

21 2.621 962 98× 10−3 51 −6.113 406 29× 10−5 81 −2.258 814 43× 10−5

22 2.893 001 70× 10−3 52 −1.249 614 53× 10−4 82 −1.439 818 69× 10−5

23 2.839 486 51× 10−3 53 −1.701 769 02× 10−4 83 −6.182 586 40× 10−6

24 2.533 219 73× 10−3 54 −1.958 360 70× 10−4 84 1.418 646 77× 10−6

25 2.052 219 67× 10−3 55 −2.026 502 29× 10−4 85 7.897 365 74× 10−6

26 1.473 132 26× 10−3 56 −1.926 959 92× 10−4 86 1.289 916 17× 10−5

27 8.653 970 89× 10−4 57 −1.690 619 44× 10−4 87 1.623 056 01× 10−5

28 2.871 842 60× 10−4 58 −1.354 679 88× 10−4 88 1.785 289 84× 10−5

29 −2.169 887 80× 10−4 59 −9.589 016 14× 10−5 89 1.786 508 77× 10−5

It is sometimes possible to extend the perturbative prediciton beyond these limits. One of
the most common techniques for such an improvement in the convergence of a perturbation
series is its renormalization. It consists of a nonlinear mapping of the original perturbation
parameter (λ in the equations above) onto a more convenient one. There are many equivalent
mappings (see, e.g., [3]). Here we consider one which has lately received detailed attention
[18, 19] in connection to strong-coupling expansions. It changes the perturbation parameter
λ ∈ [0,∞] into κ ∈ [0, 1] according to

λ5/4 = ω(1− κ)5/4
κ

(11)

where the exponent54 is appropriate for the Hamiltonian in (8), andω is a free parameter.
Application of the scale transformationx → x

√
1− κ to the Hamiltonian (8) leads to a

new Hamiltonian

H(r) =
√

λ

1− κ
[
p2+ (1− κ)

(
x2− ix3

ω

)
+ ix3

ω

]
. (12)

The algorithm used to calculate the original perturbation expansion also applies to the
renormalized series generated by the Hamiltonian (12). The resulting expansion coefficients
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are shown in table 2. After searching for an optimal value ofω we choseω = 1 in all our
calculations.

Table 3. Ground-state energy calculated by the renormalized series and by direct numerical
integration of the Schrödinger equation for a wide range of values of the coupling constantλ.

λ κ E(perturbative) E(numerical)

0.1 0.907 47 1.158 161 23 1.158 161 23
1 0.461 40 1.291 754 16 1.291 754 16

10 0.052 56 3.169 095 62 3.169 096 16
100 0.003 15 9.999 968 45 10.000 068 74

In the language of perturbation theory thePT symmetry of our models and the related
phenomenon of existence of real energies is reflected by the reality of the perturbative
coefficients. The renormalized coefficients in table 2 exhibit a surprising oscillatory
behaviour with an amplitude that decreases slowly with the perturbation order. We find
this resummation-friendly behaviour remarkable, as it does not occur in similar expansions
for real Hamiltonians [19].

By absolute value, the coefficients of the renormalized series decrease with the order
more slowly than the coefficients of the standard expansion. Nonetheless, the former series
exhibits better convergence properties because the new perturbation parameter(1− κ) is
limited to the interval [0, 1]. For an immediate check one may recall a direct numerical
integration of Schr̈odinger equation for comparison. A small sample of such a test is given in
table 3. For the ground-state energy and using the coefficients in table 2 we can see that the
relative difference between the exact result and its remormalized perturbative approximant
is always smaller than 10−5, even for huge values of the original unrenormalized couplingλ.

Clearly, renormalization is successful in this case. Let us emphasize that such an
observation is non-trivial. Indeed, in contrast to the current experience with unitary
equivalence of Hermitian operators, the explicit form of relationship between our present
models (8) and (12) may only be characterized in terms of theirPT -symmetry in general.
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